|
template<class F , class T > |
T | tadah_fussy::math_lib::solver::GradientMethod (F f, T x0, T h, T e) |
| 勾配法 ( Gradient Method ) [詳解]
|
|
template<class F , class T > |
T | tadah_fussy::math_lib::solver::BisectionMethod (F f, T x0, T x1, T e) |
| 二部法 ( Bisection Method ) [詳解]
|
|
template<class F , class T > |
T | tadah_fussy::math_lib::solver::SecantMethod (F f, T x0, T x1, T e) |
| セカント法 ( Secant Method ) [詳解]
|
|
template<class F , class T > |
T | tadah_fussy::math_lib::solver::FalsePositionMethod (F f, T x0, T x1, T e) |
| はさみうち法 ( False Position Method ) [詳解]
|
|
template<class F , class T > |
T | tadah_fussy::math_lib::solver::InverseQuadraticInterpolation (F f, T x0, T x2, T e) |
| 逆二次補間法 ( Inverse Quadratic Interpolation ) [詳解]
|
|
template<class F , class T > |
T | tadah_fussy::math_lib::solver::BrentMethod (F f, T x0, T x2, T e) |
| ブレント法 ( Brent Method ) [詳解]
|
|
template<class F , class DF , class D > |
D | tadah_fussy::math_lib::solver::Newton (D y, F f, DF df, D xInit, uint32_t maxCount, D threshold) |
| ニュートン-ラフソン法により f(x) = y を満たす x (x0) を求める [詳解]
|
|
template<class Op , class T > |
void | tadah_fussy::math_lib::solver::HillClimbing (Op op, std::vector< T > *x0, T h, T e) |
| 山登り法 ( Hill Climbing ) による多変量関数の極値計算 [詳解]
|
|
template<class Op , class T > |
void | tadah_fussy::math_lib::solver::ConjugateGradientMethod (Op op, std::vector< T > *x0, T h, T e) |
| 共役勾配法による多変量関数の極値計算 [詳解]
|
|